Notizen

Iridoide, X1)

Stereospezifische Synthese von Iridoid-a-glucosiden

Lutz-F. Tietze* und Peter Marx

Abteilung Chemie der Universität Dortmund, Postfach 500500, D-4600 Dortmund 50

Eingegangen am 20. Juli 1977

Iridoids, X1)

Stereospecific Synthesis of Iridoid-\alpha-glucosides

Treatment of the iridoidaglycone 3 with 1,2-anhydro- α -D-glucopyranose triacetate (*Brigls* anhydride, 4) in the presence of a trace of boron trifluoride/ether led stereospecifically to the α -glucosides 7, 8, and 9 with 38% yield. In an analogous reaction 10 was formed from 2.

Untersuchungen zur Synthese der weit verbreiteten Naturstoffklasse der Iridoidglucoside 2), z. B. 1, finden sich bisher nur in geringem Maße beschrieben 3). Dies liegt vor allem an den Schwierigkeiten bei der Bildung der β -glycosidischen Bindung mit D-Glucose. Wir konnten zeigen 1), daß die Synthese von Iridoidglucosiden durch Umsetzung von Iridoidaglyca mit 2,3,4,6-Tetraacetyl- α -D-glucosylbromid und Silberperchlorat möglich ist. Hierbei wird überwiegend das gewünschte β -Glucosid gebildet. Hier beschreiben wir nun die Glucosidierung von Iridoidaglyca mit 1,2-Anhydro- α -D-glucopyranose-triacetat (*Brigls* Anhydrid, 4) 4). Als Aglyca verwendeten wir hierbei das 6-Acetylloganinaglycon (2) und das Modellaglycon 3).

Das von $Brigl^{4}$) 1922 erstmals dargestellte 1,2-Anhydroglucopyranose-triacetat 4 wurde bisher nur wenig zur Glucosidierung eingesetzt, obwohl es fast immer zu eindeutig definierten Produkten führte. Mit einfachen Alkoholen erhält man ausschließlich β -Glucoside 5), während die Reaktion mit komplexeren Alkoholen bei höheren Temperaturen bevorzugt zu α -Glucosiden führt. So konnten auf diese Weise eine Reihe von α -verknüpften Disacchariden 6) und α -Phenylglucoside 7) hergestellt werden.

Chem. Ber. 111, 2441 – 2444 (1978)

¹⁾ IX. Mitteil.: L.-F. Tietze und U. Niemeyer, Chem. Ber. 111, 2423 (1978), vorstehend.

²⁾ O. Sticher und U. Junod-Busch, Pharm. Acta Helv. 50, 127 (1975).

^{3) 3}a) G. Büchi, J. A. Carlson, J. E. Powell und L.-F. Tietze, J. Am. Chem. Soc. 92, 2165 (1970); 95, 540 (1973). -3b) J. J. Partridge, N. K. Chadha und M. R. Uskoković, J. Am. Chem. Soc. 95, 532 (1973). -3c) L.-F. Tietze, Angew. Chem. 85, 763 (1973); Angew. Chem., Int. Ed. Engl. 12, 853 (1973); Chem. Ber. 107, 2499 (1974).

⁴⁾ P. Brigl, Z. Physiol. Chem. 116, 1 (1921); s. auch D. Horten und J. H. Lauterbach, Carbohydr. Res. 43, 9 (1975), sowie R. U. Lemieux und J. Howard, Methods Carbohydr. Chem. 2, 400 (1963).

⁵⁾ W. J. Hickinbottom, J. Chem. Soc. 1928, 3140. E. Hardegger und J. de Pascual, Helv. Chim. Acta 31, 281 (1948).

⁶⁾ P. C. Wyss, J. Kiss und W. Arnold, Helv. Chim. Acta 58, 1847 (1975), und dort zit. Lit.

⁷⁾ J. Kiss, K. Noack und R. D'Souza, Helv. Chim. Acta 58, 301 (1975).

[©] Verlag Chemie, GmbH, D-6940 Weinheim, 1978

Umsetzung der Aglyca 2 und 3 mit 1,2-Anhydroglucopyranose-triacetat (4)

Das Aglycon 3 wurde mit einem zweifachen Überschuß an 4 in Dichlorethan in Gegenwart von Molekularsieb 3Å umgesetzt. Bei 20°C trat keine Reaktion ein. Auch 72stdg. Erhitzen auf 84°C ergab nur einen 10 proz. Umsatz. Die Katalyse mit Lewissäuren wie Silberperchlorat und Antimon-

pentachlorid führte bei verschiedenen Temperaturen und in unterschiedlicher Konzentration hauptsächlich zur Polymerisation des Anhydrozuckers 4⁸⁾ sowie zur Bildung der Dimeren 6¹⁾.

Dagegen ergab die Reaktion von 3 und 4 in Gegenwart geringer Mengen Bortrifluorid/Ether bei $84\,^{\circ}$ C fast ausschließlich die α -Glucoside 7^{13} , 8^{13} und 9. Nach sorgfältiger chromatographischer Trennung konnten 7 zu 24%, 8 zu 15% und 9 zu 0.5% rein erhalten werden. Die entsprechenden β -Glucoside wurden nicht gefunden. Die Bildung der Dimeren 6 erfolgte unter diesen Reaktionsbedingungen nur zu etwa 5%.

Bei 7 und 8 handelt es sich um diastereomere Glucoside, in denen die Glucosyloxygruppe an C-1 jeweils trans zum Cyclopentanring steht. In dem in geringer Menge gebildeten α -Glucosid 9 liegt dagegen die ungünstige cis-Anordnung der Glucosyloxygruppe an C-1 zum Cyclopentanring vor. Diese Art der Verknüpfung hatten wir bei den anderen Glucosidierungs-Reaktionen bisher nicht nachweisen können 1).

Die Konfiguration von C-1 und C-1' in 9 ergab sich aufgrund der chiroptischen Daten und des $^1\text{H-NMR-Spektrums}^{\,9)}$. So zeigt das CD-Spektrum von 9 einen positiven Cotton-Effekt. Im $^1\text{H-NMR-Spektrum}$ findet man für 1-H ein Dublett bei $\delta=5.41$ mit J=3.5 Hz und für 1'-H ein Dublett bei $\delta=5.11$ mit J=3.5 Hz. Die Zuordnung wurde durch Doppelresonanz-Versuche abgesichert.

Analog zu 3 wurde 6-O-Acetylloganinaglycon (2) mit 4 umgesetzt. Man erhielt nach chromatographischer Reinigung das α -Glucosid 10 $^{1)}$ mit 24% Ausbeute. Das entsprechende β -Glucosid konnte auch hier nicht nachgewiesen werden.

Die stereospezifische Bildung der α -Glucoside macht es wahrscheinlich, daß durch Einwirkung von Bortrifluorid/Ether aus 4 über die Konformation 4A – entsprechend den Vorstellungen von Lemieux $^{10)}$ – das Oxonium-Ion 5 entsteht, das dann mit den Aglyca 2 und 3 nur unter Bildung von α -Glucosiden abreagieren kann.

Wir danken der Deutschen Forschungsgemeinschaft für die Förderung dieser Arbeit.

Experimenteller Teil

Verwendete Geräte s. Lit. 1).

Analyt. DC: Kieselgel Polygram U 1 G/UV₂₅₄ (Macherey-Nagel). Präp. DC: Fertigplatten Kieselgel F₂₅₄ (2 mm Schichtdicke, E. Merck). Laufmittelsystem: Aceton/Benzol (2:1).

Voruntersuchungen zur Glucosidierung von 3 mit 1,2-Anhydro- α -D-glucopyranose-triacetat (4): Jeweils 29.7 mg (0.15 mmol) des Aglycons 3 ¹⁾ in 5 ml wasserfreiem Dichlorethan wurden in Gegenwart von 300 mg Molekularsieb 3 Å mit 86.7 mg (0.30 mmol) 4 bei verschiedenen Temperaturen (-25 \rightarrow 84 °C) und mit unterschiedlichen Mengen von AgClO₄, BF₃/Ether und SbCl₅ umgesetzt. In einer weiteren Versuchsreihe arbeitete man ohne Zusatz von Lewissäuren. Der Verlauf der Reaktion wurde durch analyt. DC an Kieselgel verfolgt. Nur bei Verwendung geringer Mengen BF₃/Ether (0.01 – 0.02 ml) bei 84 °C waren Glucoside mit guten Ausbeuten erhältlich. In allen anderen Versuchen bildeten sich bevorzugt Polymere von 4 und die Dimeren 6 ¹⁾.

Synthese der α-Glucoside 7, 8 und 9: 950 mg (4.80 mmol) des Aglycons 3, 2 g Molekularsieb 3 Å und 1.44 g (5.00 mmol) 4 in 20 ml wasserfreiem Dichlorethan wurden nach Zugabe von 0.02 ml Bortrifluorid/Ether 72 h unter Rückfluß erhitzt. Nach 20 h und 50 h fügte man noch jeweils 288 mg (1.00 mmol) 4 in 2 ml Dichlorethan zu. Nach Abkühlen wurde mit 50 ml Dichlorethan verdünnt, mit gesättigter NaHCO₃-Lösung gewaschen und nach Trocknen über Natriumsulfat eingedampft.

⁸⁾ J. Zachoval und C. Schuerch, J. Polym. Sci., Part C 1969, (28), 187.

⁹⁾ Eine genaue Diskussion der spektroskopischen Daten der isomeren Iridoidglucoside und anderer Iridoidderivate erfolgt in einer späteren Veröffentlichung.

¹⁰⁾ R. U. Lemieux und G. Huber, J. Am. Chem. Soc. 78, 4117 (1956).

Nach Lösen des Rückstandes in 10 ml wasserfreiem Methanol rührte man 6 h mit 1.7 g Bariumhydroxid bei 20°C, filtrierte über stark sauren Ionenaustauscher (E. Merck) und trennte durch dreifache präp. DC an Kieselgel auf.

Fraktion A: $R_{\rm F}=0.18$: $(+)-(1R,4aS,7aR)-1-(\alpha-D-Glucopyranosyloxy)-1,4a,5,6,7,7a-hexa-hydrocyclopenta[c]pyran-4-carbonsäure-methylester (9). Ausb. 9 mg (0.5%). — CD (Methanol): <math>\Delta \epsilon$ (222 nm) = +4.5. — UV (Methanol): $\lambda_{\rm max}$ (lg ϵ) = 238 nm (4.01). — ¹H-NMR ([D₆]Aceton): δ = 7.36 (d, J = 1 Hz, 3-H), 5.41 (d, J = 3.5 Hz, 1-H), 5.11 (d, J = 3.5 Hz, 1'-H), 3.63 (s, OCH₃), 3.85 – 3.25 (m, 4 CH, CH₂), 2.7 (m, 4a-H), 2.4 – 1.2 (m, CH, 3 CH₂). Doppelresonanz-Experimente: Einstrahlung δ = 2.28 (7a-H) \rightarrow Signaländerung 5.41 (s, 1-H); δ = 3.62 (2'-H) \rightarrow 5.11 (s, 1'-H). — MS: m/e = 198 (45%, Aglycon), 181 (38, 198 — OH); 180 (38, 198 — H₂O), 167 (21, 198 — CH₃O), 149 (43, 181 — CH₃OH), 148 (27, 180 — CH₃OH).

Brauchbare Analysendaten konnten aufgrund der Empfindlichkeit der Verbindung und der zu geringen Substanzmengen, die zur Verfügung standen, nicht erhalten werden. Eine exakte Molmassenbestimmung von 9 und der silylierten Verbindung gelang ebenfalls nicht.

Fraktion B: $R_F = 0.16$: α -Glucosid 8. Ausb. 395 mg (24%). Schmp. 125 °C (Lit. 1) 125 °C). $- [\alpha]_D^{20} = 175.9^\circ$ (c = 0.5 in Methanol). - CD (Methanol): $\Delta \varepsilon$ (228 nm) = +8.1.

Fraktion C: $R_F = 0.12$: α -Glucosid 7. Ausb. 263 mg (15%), Schmp. 80° C (Lit. 1) 80° C). $- [\alpha]_D^{20} = 24^{\circ}$ (c = 0.5 in Methanol). - CD (Methanol): $\Delta \epsilon$ (222 nm) = -5.2.

Synthese des α -Glucosids 10: 170 mg (0.63 mmol) 6-O-Acetylloganinaglycon (2) und 200 mg (0.69 mmol) 4 wurden in 10 ml wasserfreiem Dichlorethan nach Zugabe von 0.01 ml Bortrifluorid/ Ether 72 h unter Rückfluß erhitzt. Nach 22 h wurden nochmals 100 mg (0.35 mmol) 4 zugegeben und nach Beendigung der Umsetzung in der beschriebenen Weise aufgearbeitet. Nach sorgfältiger Reinigung durch präp. DC an Kieselgel erhielt man 60 mg (24%) des α -Glucosids 10 11 als farbloses Öl. $\lceil \alpha \rceil_0^{20} = +33.3^{\circ}$ (c = 0.3 in Methanol). – CD (Methanol): $\Delta \varepsilon$ (222 nm) = -4.8.

[249/77]